Optimal Stopping and Best Constants for Doob-like Inequalities I: The Case $p = 1$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Stopping Constants

k) , t h e n t h e o p t i m a l s t r a t e g y i s t o r e j e c t t h e fi r s t m − 1 a p p l i c a n t s a n d a c c e p t t h e n e x t c a n d i d a t e , w h e r 1 ] c a l c u l a t e d t h e a s y m p t o t i c p r o b a b i l i t y o f s u c c e s s t o b e [ 1 2 ,

متن کامل

Best Constants for Two Non-convolution Inequalities

The norm of the operator which averages |f | in L p (R n) over balls of radius δ|x| centered at either 0 or x is obtained as a function of n, p and δ. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in R 1. Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on L p (R n) is given. A classical result of Hardy [HLP] states ...

متن کامل

Optimal Stopping Policy for Multivariate Sequences a Generalized Best Choice Problem

  In the classical versions of “Best Choice Problem”, the sequence of offers is a random sample from a single known distribution. We present an extension of this problem in which the sequential offers are random variables but from multiple independent distributions. Each distribution function represents a class of investment or offers. Offers appear without any specified order. The objective is...

متن کامل

Stability inequalities for Lebesgue constants via Markov-like inequalities

We prove that L∞-norming sets for finite-dimensional multivariate function spaces on compact sets are stable under small perturbations. This implies stability of interpolation operator norms (Lebesgue constants), in spaces of algebraic and trigonometric polynomials. 2010 AMS subject classification: 41A10, 41A63, 42A15, 65D05.

متن کامل

Optimal Stopping Inequalities for the Integral of Brownian Paths

for all stopping times for B , and all p > 0 , where Ap and Bp are numerical constants. Although the best values for the constants Ap and Bp in (1.1) are found below too, in most of the cases it is much easier to evaluate E( ) rather than E( 1+p=2) . In this paper we shall answer the question on how the inequality (1.1) can be optimally modified if the quantity E( 1+p=2) is replaced by a functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1991

ISSN: 0091-1798

DOI: 10.1214/aop/1176990237